Soil Restoration: What we have learned.

By Chris Smith, Soil Scientist (runsonsoil@comcast.net) Soil Health Conference, Ocean County College May 30, 2012

Fix Root causes of problems as well as bandaging the wounds.

- Remove the nail in the sole of your boot and buy a new pair of socks.
- Problems associated with runoff are often symptoms of reduced infiltration resulting from poor soil health, thus the solution is to fix the health of the soil

Soil Functions A Guide to Restoration

- Medium for Plant Growth
- Regulator of Water Supplies
- Modifier of the Atmosphere
- Recycler of Raw Materials
- Habitat for Soil Organisms
- Engineering Medium

– 14th Ed. The Nature and Properties of Soils

Secret to Reducing Runoff

Put it in the ground as close to where it falls as possible

- Reduce the collection of water to one place
- Spread the infiltration of water over the largest area. Utilize safe outlets in the woods
 - Build
 - Depressional woodlands as
 - Multi-chambered basin like a cranberry bog (200')
 - Multi-basined waterway with drop structure
 - Remove
 - Low flow channels

Basic Conditions

Increase Upland Infiltration to Improve Basin functioning

	Disturbed	Degraded Functions	Natural	Functions Maintained
Upland Little water	Abrupt layers Compacted/ Lifeless	Reduced growth Elevated runoff	Uncompacted/ Alive	Good Filter Meters water
Basin Big water can become water compacted	Abrupt Layers Compacted	Reduced growth Poor filter Lo Infiltration	Uncompacted? /Alive	Poor filter High infiltration

Mimic the Natural Soil

- Disturbed
 - C or A-C horizon
 - Hi/variable SOM on a % wt.
 basis
 - Hi SOM on a % wt. basis
 - Lo SOM on areal
 - Exposed mineral
 - High Density in surface
 - All pores uniform sized
 - Pores unconnected
 - No organisms
 - Often saturated

- Natural
 - O-A-B-C horizons
 - SOM concentrated at surface and distributed to lower depths
 - Organic blanket
 - High density with depth
 - Mixture pore sizes
 - Pores connected in a net
 - Ants or earthworms
 - Seldom saturated

Construction/Rehab Soil

- These processes are all inter-connected
 - Additions
 - Adding compost, increasing aeration
 - Depletions
 - Leaching, gaseous losses, organic matter removed
 - Transformations
 - Avoiding reducing iron and manganese
 - Translocation

Don't attempt to Fix what is not broken!

- Soil Assessment First
 - Saves time and Money and avoids doing more harm than good!!
 - Is it so bad that it will not self correct without mechanical treatment?
 - What minimium surface depth would need to be restored to be equal or better than subsurface?
 - What precautions should be in place?

Soil Assessment

- Rod test, if it passes to >20" and the surface of 6" has a distinctly dark surface and visible organisms.
- Bulk Density
- Ksat
- Texture
- pH and % SOM to calculate total areal SOC

Biological Activities Capture the Sun's Energy

Add Soil Organic Matter

- Plant growth, green manure
- Compost
- Slow steady aeration
- Keep it on the surface
- Forest and Fungus
 - Hi C:N ratio
- Low Albedo Hi Entropy
 - Cool and moist
- Innoculate

Subtract Soil Organic Matter

- Worms and deer
- N Fertilizer
- Tillage and Incorporation
- Incorporation
- Grass and bacteria
 - Low C:N ratio
- Hi Albedo Lo Entropy
 - Hot and dry
- Wait for life to return

All three factors interrelated

Chemical Environment

controls direction/efficiency of biological

Desirable for forest landuse

- Lo pH favors Oak/Pine
- Lo pH favors Oak/Hickory
- Lo pH favors forest
- Lo pH stable aggregates biologically in long run

Undesirable for forest landuse

- Hi pH favors Maple
- Hi pH favors grass
- Hi pH stable aggregates electrically

Physical Factor Activities

Leave no trace, walk on it as if you needed snowshoes

Favors Health

 Add fractures to create macropores , however, must stabilize chemically and biologically to maintain

Degrades health

- Too much or little aeration
- Heavy traffic, consider both the Ground pressure (psi)and the total loading(double the weight with the same psi means twice as wide and twice as deep)
- Wait until the soil is dry enough to gain strength (<5% water)

Dos and Don'ts

Do

 Dig and Drop only when the natural structure would be single grained, and have only particle to particle pores at most.

Don't

 Dig up extra courser soil from below to create a blend of more sandy mix. It will not be enough sand to achieve single grain, and it will not develop aggregate porosity before forming a massive self compacted impermeable layer.

Surface Horizons Figure 3-13 NSSM

- Mechanically bulked
- Mechanically compact
- Water compacted, repetitive occurrence of free water

- Crust <2"
- Fluventic Zone <2"

- Tillage loose & friable
- Traffic pan dense
- Action of large changes in water state without mechanical load except for the weight of the soil. Weak to massive
- Compaction by rain
- Transported materials